MAT 319 - Foundations of Analysis

Midterm II Practice Problems

Stony Brook University Fall 2023

Sequences and Series

- (i) State the Bolzano–Weierstrass Theorem.
- (ii) Does there exist a sequence that is unbounded, but has a convergent subsequence? If not, then provide a proof. If yes, give an example and prove your claim.
- (iii) Give the definition of a Cauchy sequence.
- (iv) Prove the following statement or provide a counterexample. Suppose that (x_n) is a sequence with the property that $\lim_{n \to \infty} (x_{n+1} x_n) = 0$. Then (x_n) is a Cauchy sequence.
- (v) Show directly from the definition that the following sequence is not a Cauchy sequence.

$$x_n = \begin{cases} 2, & n \text{ even} \\ 5, & n \text{ odd} \end{cases}$$

- (vi) If (x_n) is an unbounded sequence with $x_n > 0$ for each $n \in \mathbb{N}$, show that it has a subsequence (x_{n_k}) with $\lim x_{n_k} = \infty$.
- (vii) Show that if $x_n > 0$ for each $n \in \mathbb{N}$, then $\lim x_n = 0$ if and only if $\lim (1/x_n) = \infty$.
- (viii) Let (x_n) be a sequence. Give the definition of convergence of the series $\sum_{n=1}^{\infty} x_n$.
- (ix) Suppose that $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ converge. Show that $\sum_{n=1}^{\infty} (x_n + y_n)$ converges.
- (x) Determine whether the following series is convergent or divergent. Justify carefully your claims using some convergence or divergence criteria.

$$\sum_{n=1}^{\infty} \frac{5\sin^2 n}{\sqrt{4^n + 2n}}$$

(xi) Determine whether the following series is convergent or divergent. Justify carefully your claims using some convergence or divergence criteria.

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n-1}}$$

- (xii) Is it true in general that if the series $\sum_{n=1}^{\infty} x_n^3$ converges and $x_n \ge 0$, then the series $\sum_{n=1}^{\infty} \sqrt{x_n}$ also converges? If yes, then provide a proof. Otherwise, give a counterexample.
- (xiii) Suppose that (x_n) is a sequence of positive numbers such that $\sum_{n=1}^{\infty} \sqrt{x_n}$ is convergent. Then prove that the series $\sum_{n=1}^{\infty} x_n^3$ is convergent. You can use a theorem that we proved in class without proof.

1

Functions

- (i) Let $f: \mathbb{R} \to \mathbb{R}$ be a function and $c \in \mathbb{R}$. When do we say that $\lim_{x \to c} f(x) = L$?
- (ii) Using the definition of the limit **only**, show that

$$\lim_{x \to -1} \frac{x+5}{2x+3} = 4.$$

(iii) Using the definition of the limit only, show that

$$\lim_{x \to 1} \sqrt{x} = 1.$$

- (iv) If $f(x) = \sin(1/x)$, $x \neq 0$, then show that $\lim_{x\to 0} f(x)$ does not exist. If $g(x) = x\sin(1/x)$, $x \neq 0$, then show that $\lim_{x\to 0} g(x)$ exists.
- (v) Let $f: \mathbb{R} \to \mathbb{R}$ be a function and $c \in \mathbb{R}$. When do we say that $\lim_{x \to c} f(x) = \infty$?
- (vi) Let $g:(c,\infty)\to\mathbb{R}$ be a function with $g(x)\neq 0$ for all $x\in(c,\infty)$. Using the definition of the limit, show that

if
$$\lim_{x \to c} g(x) = \infty$$
 then $\lim_{x \to c} \frac{1}{g(x)} = 0$.

(vii) Consider the piecewise defined function

$$h(x) = \begin{cases} 2x^2 + 1, & x \text{ rational} \\ x + 1, & x \text{ irrational} \end{cases}.$$

Prove that the function h is continuous at c = 0 and c = 1/2, and discontinuous at c = 1. You may use the definition of continuity or some (dis)continuity criteria. Then show that the function h is not continuous at any $c \notin \{0, 1/2\}$.

- (viii) Show that the function f(x) = |x| is continuous at every $c \in \mathbb{R}$.
- (ix) Show that the function \sqrt{x} is continuous at every $c \ge 0$. (Hint: treat separately the cases c = 0 and c > 0.)
- (x) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $|f(x) f(y)| \leq 3|x y|$ for each $x, y \in \mathbb{R}$. Show that f is continuous at every $c \in \mathbb{R}$.
- (xi) If $f: [0,2] \to \mathbb{R}$ is continuous and f(1) > 0, show that there exists $\delta > 0$ such that f(x) > 0 for all $x \in (1 \delta, 1 + \delta)$.