MAT 319 - Foundations of Analysis

Midterm II Practice Problems

Stony Brook University
 Fall 2023

Sequences and Series

(i) State the Bolzano-Weierstrass Theorem.
(ii) Does there exist a sequence that is unbounded, but has a convergent subsequence? If not, then provide a proof. If yes, give an example and prove your claim.
(iii) Give the definition of a Cauchy sequence.
(iv) Prove the following statement or provide a counterexample. Suppose that $\left(x_{n}\right)$ is a sequence with the property that $\lim \left(x_{n+1}-x_{n}\right)=0$. Then $\left(x_{n}\right)$ is a Cauchy sequence.
(v) Show directly from the definition that the following sequence is not a Cauchy sequence.

$$
x_{n}= \begin{cases}2, & n \text { even } \\ 5, & n \text { odd }\end{cases}
$$

(vi) If $\left(x_{n}\right)$ is an unbounded sequence with $x_{n}>0$ for each $n \in \mathbb{N}$, show that it has a subsequence ($x_{n_{k}}$) with $\lim x_{n_{k}}=\infty$.
(vii) Show that if $x_{n}>0$ for each $n \in \mathbb{N}$, then $\lim x_{n}=0$ if and only if $\lim \left(1 / x_{n}\right)=\infty$.
(viii) Let $\left(x_{n}\right)$ be a sequence. Give the definition of convergence of the series $\sum_{n=1}^{\infty} x_{n}$.
(ix) Suppose that $\sum_{n=1}^{\infty} x_{n}$ and $\sum_{n=1}^{\infty} y_{n}$ converge. Show that $\sum_{n=1}^{\infty}\left(x_{n}+y_{n}\right)$ converges.
(x) Determine whether the following series is convergent or divergent. Justify carefully your claims using some convergence or divergence criteria.

$$
\sum_{n=1}^{\infty} \frac{5 \sin ^{2} n}{\sqrt{4^{n}+2 n}}
$$

(xi) Determine whether the following series is convergent or divergent. Justify carefully your claims using some convergence or divergence criteria.

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{2 n-1}}
$$

(xii) Is it true in general that if the series $\sum_{n=1}^{\infty} x_{n}^{3}$ converges and $x_{n} \geq 0$, then the series $\sum_{n=1}^{\infty} \sqrt{x_{n}}$ also converges? If yes, then provide a proof. Otherwise, give a counterexample.
(xiii) Suppose that $\left(x_{n}\right)$ is a sequence of positive numbers such that $\sum_{n=1}^{\infty} \sqrt{x_{n}}$ is convergent. Then prove that the series $\sum_{n=1}^{\infty} x_{n}^{3}$ is convergent. You can use a theorem that we proved in class without proof.

Functions

(i) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and $c \in \mathbb{R}$. When do we say that $\lim _{x \rightarrow c} f(x)=L$?
(ii) Using the definition of the limit only, show that

$$
\lim _{x \rightarrow-1} \frac{x+5}{2 x+3}=4
$$

(iii) Using the definition of the limit only, show that

$$
\lim _{x \rightarrow 1} \sqrt{x}=1
$$

(iv) If $f(x)=\sin (1 / x), x \neq 0$, then show that $\lim _{x \rightarrow 0} f(x)$ does not exist. If $g(x)=$ $x \sin (1 / x), x \neq 0$, then show that $\lim _{x \rightarrow 0} g(x)$ exists.
(v) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and $c \in \mathbb{R}$. When do we say that $\lim _{x \rightarrow c} f(x)=\infty$?
(vi) Let $g:(c, \infty) \rightarrow \mathbb{R}$ be a function with $g(x) \neq 0$ for all $x \in(c, \infty)$. Using the definition of the limit, show that

$$
\text { if } \quad \lim _{x \rightarrow c} g(x)=\infty \quad \text { then } \quad \lim _{x \rightarrow c} \frac{1}{g(x)}=0
$$

(vii) Consider the piecewise defined function

$$
h(x)= \begin{cases}2 x^{2}+1, & x \text { rational } \\ x+1, & x \text { irrational }\end{cases}
$$

Prove that the function h is continuous at $c=0$ and $c=1 / 2$, and discontinuous at $c=1$. You may use the definition of continuity or some (dis)continuity criteria. Then show that the function h is not continuous at any $c \notin\{0,1 / 2\}$.
(viii) Show that the function $f(x)=|x|$ is continuous at every $c \in \mathbb{R}$.
(ix) Show that the function \sqrt{x} is continuous at every $c \geq 0$. (Hint: treat separately the cases $c=0$ and $c>0$.)
(x) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $|f(x)-f(y)| \leq 3|x-y|$ for each $x, y \in \mathbb{R}$. Show that f is continuous at every $c \in \mathbb{R}$.
(xi) If $f:[0,2] \rightarrow \mathbb{R}$ is continuous and $f(1)>0$, show that there exists $\delta>0$ such that $f(x)>0$ for all $x \in(1-\delta, 1+\delta)$.

